Matrix-valued Kernels for Shape Deformation Analysis

نویسندگان

  • Mario Micheli
  • Joan Alexis Glaunès
چکیده

The main purpose of this paper is providing a systematic study and classification of non-scalar kernels for Reproducing Kernel Hilbert Spaces (RKHS), to be used in the analysis of deformation in shape spaces endowed with metrics induced by the action of groups of diffeomorphisms. After providing an introduction to matrix-valued kernels and their relevant differential properties, we explore extensively those, that we call TRI kernels, that induce a metric on the corresponding Hilbert spaces of vector fields that is both translationand rotation-invariant. These are analyzed in an effective manner in the Fourier domain, where the characterization of RKHS of curl-free and divergence-free vector fields is particularly natural. A simple technique for constructing generic matrix-valued kernels from scalar kernels is also developed. We accompany the exposition of the theory with several examples, and provide numerical results that show the dynamics induced by different choices of TRI kernels on the manifold of labeled landmark points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Kernels for Measures on Partitions

We consider the problem of computation of the correlation functions for the z-measures with the deformation (Jack) parameters 2 or 1/2. Such measures on partitions are originated from the representation theory of the infinite symmetric group, and in many ways are similar to the ensembles of Random Matrix Theory of β = 4 or β = 1 symmetry types. For a certain class of such measures we show that ...

متن کامل

Learning Equivariant Functions with Matrix Valued Kernels

This paper presents a new class of matrix valued kernels that are ideally suited to learn vector valued equivariant functions. Matrix valued kernels are a natural generalization of the common notion of a kernel. We set the theoretical foundations of so called equivariant matrix valued kernels. We work out several properties of equivariant kernels, we give an interpretation of their behavior and...

متن کامل

Learning Equivariant Functions with Matrix Valued Kernels - Theory and Applications

This paper presents a new class of matrix valued kernels, which are ideally suited to learn vector valued equivariant functions. Matrix valued kernels are a natural generalization of the common notion of a kernel. We set the theoretical foundations of so called equivariant matrix valued kernels. We work out several properties of equivariant kernels, we give an interpretation of their behavior a...

متن کامل

Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning

This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...

متن کامل

Higher Order Kernels and Locally Affine LDDMM Registration

Abstract. To achieve sparse description that allows intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. We accomplish this by introducing higher order kernels in the LDDMM registration framework. The kernels allow local description of affine tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013